The Aquila Consortium: Building the ultimate Bayesian machine to interpret cosmological dataset

Guilhem Lavaux (IAP/CNRS) and Aquila Consortium

IHP Trimester - "Statistical inference workshop"

Aquila consortium (https://aquila-consortium.org)

Outline

Introduction

The chosen path: embrace the complexity

Two specific sub-models:

- Altair (Alcock Pasczyń ski test)
- VIRBIUS2 (Flow inference with distance data)

The path forward / Conclusion

Introduction

From theory to observations...

Model

Observations

- Perfect
- Complete description
- Full knowledge of physics
- Did I say perfect ?

- Great but messy
- We do not understand the physics
- Systematics not fully known
- Good attempt by observers to seemingly make our life easier end up bad

Various hacking to make sense of data

From theory to observations...

Model

Observations

- Perfect
- Complete description
- Full knowledge of physics
- Did I say perfect ?

- Great but messy
- We do not understand the physics
- Systematics not fully known
- Good attempt by observers to seemingly make our life easier end up bad

The ultimate Bayesian machine ?

The ideal scheme

The more pragmatic scheme

Enter...

Enter...

github.com/AlDanial/cloc	v 1.72 T=0.26	s (1649.8 fil	es/s, 264776.5 l	ines/s)
Language	files	blank	comment	code
C++ C/C++ Header Julia	191 235 4	7515 6407 92	4704 4066 64	23358 22438 366
SUM:	430	14014	8834	46162

Check ARES at https://bitbucket.org/bayesian_lss_team/

 $\pi(\hat{\delta}) \propto \exp\left(-\frac{1}{2}\sum_{k}|\hat{\delta}_{k}|^{2}/P_{k}\right)$ Initial conditions

Some BORG3 bias models

Voxel predictibility \rightarrow freedom in bias model choice ${\cal B}$

Purely local models

- $\delta_g = b\delta_m$ Linear
- Power law
- Double power law
- 1-pt halo empirical halo
- $ho_g \propto rac{
 ho_m^lpha}{1 + (
 ho_m /
 ho_0)^eta}$

 $ho_g \propto
ho_m^lpha$

$$\rho_g \propto \rho_m^{\alpha} \exp\left(-(\rho_m/\rho_0)^{-\epsilon}\right)$$

Full 1-pt Halo distribution $P(M|\vec{a}) \propto n(M, \vec{a})$

Non-local models

"EFT" / Second order

Oct-tree

Applications to data

See Jens' talk for many results on data

Opportunities of deep galaxy survey: light cone effects

SDSS3 data

SDSS3 data

Two components of light cone effect

Time

Cosmic expansion

Cosmic growth of structures

Ramanah et al. (2018, submitted)

The BORG/ALTAIR model

Bayesian Origins Reconstruction from Galaxies

ALcock-Paczyński consTrAIned Reconstruction

Image credits: Paramount Pictures, Ubisoft

Doogesh K. Ramanah

The BORG/ALTAIR inference

Image credits: Paramount Pictures, Ubisoft

Ramanah et al. (2018, submitted)

Cosmic expansion in practice...

Non-linear density remapping:

Implemented with an pth order linear polynomial interpolation

 $\rho^{(z)} = J(\vec{x}) \sum_{i} \left(\prod_{i=1}^{n} x_{a_i}^{q_i} x_{b_i}^{r_i} \dots \right) \rho_i^{(x)}$

Required to avoid strong grid-on-grid interpolation aliasing (5th order ok in practice)

Ramanah et al. (2018, submitted)

Cosmic expansion in practice...

Non-linear density remapping:

Implemented with an pth order linear polynomial interpolation

$$\rho^{(z)} = J(\vec{x}) \sum_{i} \left(\prod_{i=1}^{n} x_{a_i}^{q_i} x_{b_i}^{r_i} \dots \right) \rho_i^{(x)}$$

Required to avoid strong grid-on-grid interpolation aliasing (5th order ok in practice)

Movie Credit: Doogesh K. Ramanah Ramanah et al. (2018, submitted)

Lightcone in 1/2LPT

$$\vec{x}(\vec{q}) = \vec{q} + \Psi(\vec{q}) \underset{LPT}{\simeq} \vec{q} + D(a(||\vec{q}||))\vec{\Psi}(\vec{q})$$

Can be generalized to PM

Is differentiable

Misses some higher order effect, but exact solution can be implemented also

Mock test setup: SDSS3 template

Mock test setup: results

Another interesting POV is Li et al. (ApJ, 2014, 2016)

Ramanah et al. (2018, submitted)

Robustness assessment

Robustness to improper prior

Good prior

Bad prior

Constraints resilient to isotropic prior biases

MCMC efficiency

- The BORG3 machine is starting to become a powerful machine to exploit spectroscopic surveys, with flexible internals and parallelization.
- The ALTAIR extension is showing promising results for cosmological information extraction, relying on the detailed anisotropic distortion of the density field.
- Data application of BORG/ALTAIR are coming.

Velocity field inference from noisy distance data ... and some application to data

Velocity Reconstruction using Bayesian Inference Scheme

Why cosmic flows are interesting

Direct observation of gravitational field is difficult

Lensing
 Integrated Sachs Wolf effect
 Cosmic velocities
 Galaxy distribution

Cosmic velocities have several advantages:

Do not need background sources

- High S/N nearby
- Less assumptions

Some big disadvantages:

- Prone to high systematics
- Very noisy at high distances
- Unclear calibration of distance indicators (Fundamental plane, Tully-Fisher, ...)

The Cosmic Flows inference problem

It is old/recent (Late 1970s, Jim Peebles action method, linear gravity solver)

Got mostly abandoned in 1999 (except for pure RSD)

Now solvable with Bayesian Hierarchical Modeling (BHM)

Will be needed for Taipan, ZTF, LSST

The Cosmic Flows inference problem

It is old/recent (Late 1970s, Jim Peebles action method, linear gravity solver)

Got mostly abandoned in 1999 (except for pure RSD)

Now solvable with Bayesian Hierarchical Modeling (BHM)

Will be needed for Taipan, ZTF, LSST

VIRBIUS model: forward

Distance estimate

$$u_i = \mu_i^{\text{obs}} + \epsilon_i^{\mu}$$

Cosmology

$$\begin{array}{l} & \underset{i}{\overset{\text{Spectral measurement}}{\overset{\text{NGC 4151}}{\overset{\text{I}}}} \overset{\text{I}}{\overset{\text{V}}} \overset{\text{O}}{\overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}{\overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}{\overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}{\overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}{\overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}} \overset{\text{O}}} \overset{\text{O}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}}} \overset{\text{O}} \overset{\text$$

Classifier / supplemental error

 $\langle (\epsilon_i^v)^2 \rangle = \sigma_{p(i)}^2$

The VIRBIUS model (Diagram attempt)

The VIRBIUS model (Diagram attempt)

Redshift cut biases

Observed redshift distribution with cut

Actual redshift distribution with cut

Redshift cut biases

6dF dataset

Results on mock data

Standard deviation

MCMC efficiency

...Some results on data with VIRBIUS1

Other work: VIRBIUS1 on CF3

CF3: Example of distance inference

CF3: Calibration checks

Error on density / velocity

The Path forward / Conclusion

The Aquila consortium

- Founded in 2016
- Gather people interested in working with each other on developing the Bayesian pipelines and run analysis on data.

https://aquila-consortium.org/

Our mission

We are an international collaboration of researchers interested in developing and applying cutting-edge statistical inference techniques to study the spatial distribution of matter in our Universe. We embrace the latest innovations in information theory and artificial intelligence to optimally extract physical information from data and use derived results to facilitate new discoveries.

Get notified when new results are published

🎔 @AquilaScience

Our latest results

Predictive cosmology: cosmic flows

Predictive cosmology: fifth force

Image credit: Sukyong Yi

Desmond et al. (2017, 2018a,b,c)

Predictive cosmology: Coma dynamics

Jasche & Lavaux; Lavaux & Jasche; Peirani, Lavaux & Jasche (2018, in prep.)

Conclusion: great future

- Velocity field (also VIRBIUS with F. Fuhrer)
- X-ray cluster emission
- Kinetic Sunyaev Zel'dovich
- Rees-Sciama
- Dark matter ?

- Cosmic expansion
- Power spectrum (and governing parameters)
- Gaussianity tests of initial conditions
- Direct probe of dynamics

Conclusion: great future and challenges

- Velocity field
- X-ray cluster emission
- Kinetic Sunyaev Zel'dovich
- Rees-Sciama
- Dark matter ?

- Cosmic expansion
- Power spectrum (and governing parameters)
- Gaussianity tests of initial conditions
- Direct probe of dynamics

Galaxy formation: bias and likelihood

Instrument modeling